Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Front Immunol ; 14: 1090498, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2288976

RESUMEN

Background: Coronavirus disease 2019 (COVID-19) caused by the Omicron variant occurred in Shanghai, China, but its clinical characteristics and virology have not been comprehensively described. Methods: This retrospective cohort study included adult inpatients (≥18 years) diagnosed with COVID-19 at Changhai Hospital. Laboratory and clinical data were obtained from electronic medical records to investigate the clinical characteristics of COVID-19 and the variations in the patients' laboratory indexes were examined. Results: The symptoms of COVID-19 caused by the Omicron variant were relatively mild. Upper respiratory tract specimens yielded higher positive detection rates than lower respiratory tract and intestinal specimens. Peak COVID-19 viral load was reached at the time of admission; quantification cycle (Cq) values increased to approximately 35 after 8.54 days. In vivo viral shedding duration correlated with age and disease severity (p<0.05). The older the patient and the more severe the disease, the longer the duration of viral shedding was. Portion parameters of blood routine, coagulative function, clinical chemistry, and inflammatory factor showed a certain correlation with the SARS-CoV-2 viral load. Conclusions: Virus replication and shedding are rapid in Omicron-positive patients; COVID-19 in these patients is characterized by acute onset, mild symptoms, and fast recovery. Older patients and those with more severe disease demonstrate prolonged virus shedding. Routine hematological indexes can reveal disease severity and help clinically evaluate the patient's condition.


Asunto(s)
COVID-19 , Humanos , Adulto , SARS-CoV-2 , Esparcimiento de Virus , Estudios Retrospectivos , Pacientes Internos , China
2.
Cell Discov ; 8(1): 104, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: covidwho-2062195

RESUMEN

The highly mutated and transmissible Omicron (BA.1) and its more contagious lineage BA.2 have provoked serious concerns over their decreased sensitivity to the current COVID-19 vaccines and evasion from most anti-SARS-CoV-2 neutralizing antibodies (NAbs). In this study, we explored the possibility of combating the Omicron and BA.2 by constructing bispecific antibodies based on non-Omicron NAbs. We engineered 10 IgG-like bispecific antibodies with non-Omicron NAbs named GW01, 16L9, 4L12, and REGN10987 by fusing the single-chain variable fragments (scFvs) of two antibodies through a linker and then connecting them to the Fc region of IgG1. Surprisingly, 8 out of 10 bispecific antibodies showed high binding affinities to the Omicron receptor-binding domain (RBD) and exhibited extreme breadth and potency against pseudotyped SARS-CoV-2 variants of concern (VOCs) including Omicron and BA.2, with geometric mean of 50% inhibitory concentration (GM IC50) values ranging from 4.5 ng/mL to 103.94 ng/mL, as well as the authentic BA.1.1. Six bispecific antibodies containing the cross-NAb GW01 not only neutralized Omicron and BA.2, but also neutralized the sarbecoviruses including SARS-CoV and SARS-related coronaviruses (SARSr-CoVs) RS3367 and WIV1, with GM IC50 ranging from 11.6 ng/mL to 103.9 ng/mL. Mapping analyses of 42 spike (S) variant single mutants of Omicron and BA.2 elucidated that these bispecific antibodies accommodated the S371L/F mutations, which were resistant to most of the non-Omicron NAbs. A cryo-electron microscopy (cryo-EM) structure study of the representative bispecific antibody GW01-16L9 (FD01) in its native full-length IgG form in complex with the Omicron S trimer revealed 5 distinct trimers and one novel trimer dimer conformation. 16L9 scFv binds the receptor-binding motif (RBM), while GW01 scFv binds a epitope outside the RBM. Two scFvs of the bispecific antibody synergistically induced the RBD-down conformation into 3 RBD-up conformation, improved the affinity between IgG and the Omicron RBD, induced the formation of trimer dimer, and inhibited RBD binding to ACE2. The trimer dimer conformation might induce the aggregation of virions and contribute to the neutralization ability of FD01. These novel bispecific antibodies are strong candidates for the treatment and prevention of infection with the Omicron, BA.2, VOCs, and other sarbecoviruses. Engineering bispecific antibodies based on non-Omicron NAbs could turn the majority of NAbs into a powerful arsenal to aid the battle against the pandemic.

3.
Brain Sci ; 11(12)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1572367

RESUMEN

Nasal breathing is a dynamic cortical organizer involved in various behaviors and states, such as locomotion, exploration, memory, emotion, introspection. However, the effect of sensory deprivation of nasal respiratory breath (NRD) on behavior remain poorly understood. Herein, general locomotor activity, emotion, learning and memory, social interaction, and mechanical pain were evaluated using a zinc sulfate nasal irrigation induced nasal respiratory sensory deprivation animal model (ZnSO4-induced mouse model). In the open field test, the elevated O-maze test, and forced swim test, NRD mice exhibited depressive and anxiety-like behaviors. In memory-associated tests, NRD mice showed cognitive impairments in the hippocampal-dependent memory (Y maze, object recognition task, and contextual fear conditioning (CFC)) and amygdala-dependent memory (the tone-cued fear conditioning test (TFC)). Surprisingly, NRD mice did not display deficits in the acquisition of conditional fear in both CFC and TFC tests. Still, they showed significant memory retrieval impairment in TFC and enhanced memory retrieval in CFC. At the same time, in the social novelty test using a three-chamber setting, NRD mice showed impaired social and social novelty behavior. Lastly, in the von Frey filaments test, we found that the pain sensitivity of NRD mice was reduced. In conclusion, this NRD mouse model showed a variety of behavioral phenotypic changes, which could offer an important insight into the behavioral impacts of patients with anosmia or those with an impaired olfactory bulb (OB) (e.g., in COVID-19, Alzheimer's disease, Parkinson's disease, etc.).

4.
Front Public Health ; 9: 678213, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1221996

RESUMEN

This paper uses the mixed frequency vector autoregression model to explore the impact of economic fluctuations on infectious diseases mortality (IDM) from China perspective. We find that quarterly gross domestic product (GDP) fluctuations have a negative impact on the annual IDM, indicating that the mortality of infectious diseases varies counter-cyclically with the business cycle in China. Specifically, IDM usually increases with deterioration in economic conditions, and vice versa. The empirical results are consistent with the hypothesis I derived from the theoretical analysis, which highlights that economic fluctuations can negatively affect the mortality of infectious diseases. The findings can offer revelations for the government to consider the role of economic conditions in controlling the epidemic of infectious diseases. Policymakers should adopt appropriate and effective strategies to mitigate the potential negative effects of macroeconomic downturns on the mortality of infectious diseases. In the context of the COVID-19 pandemic, these analyses further emphasize the importance of promoting economic growth, increasing public health expenditure, and preventing and controlling foreign infectious diseases.


Asunto(s)
COVID-19 , Enfermedades Transmisibles , China/epidemiología , Humanos , Pandemias , SARS-CoV-2
5.
Pacific-Basin Finance Journal ; : 101514, 2021.
Artículo en Inglés | ScienceDirect | ID: covidwho-1062537

RESUMEN

The present paper explores the impact of trade policy uncertainty (TPU) on agricultural commodity prices (ACP) by employing bootstrap full- and subsample rolling-window Granger causality tests. We find that TPU has both positive and negative effects on ACP, suggesting that TPU may change the supply of and demand for agricultural commodities, leading to fluctuations in ACP. These results support the hypotheses derived from the general equilibrium model, which highlights that TPU can significantly affect ACP. In turn, we find a positive impact of ACP on TPU, indicating that the agricultural commodity market reflects trade conditions in advance. In the context of Sino-U.S. trade frictions and the COVID-19 pandemic, the interaction between TPU and ACP can provide insights for governments to prevent large fluctuations in agricultural commodity markets and stabilize the national economy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA